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SUMMARY 

Engineers and scientists are increasingly required to design, test, and validate new complex 
systems in simulation environments and/or with limited experimental results due to international 
and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and 
information by critically evaluating them in terms relevance, completeness, non-distortion, 
coherence, and other key measures. Using the concepts and definitions from evolutionary 
knowledge and epistemology, ignorance is examined and classified in the report. Two ignorance 
states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e., the person 
does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e., 
the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal 
classification based on its sources and nature as provided in the report. The report also explores 
limits on knowledge construction, closed and open world assumptions, and fundamentals of 
evidential reasoning using belief revision and diagnostics within the framework of ignorance 
analysis for knowledge construction. The report also examines an algebraic problem set as 
identified by Sandia National Laboratories to be a basic building block for uncertainty 
propagation in computational mechanics. Solution algorithms are provided for the problem set 
for various assumptions about the state of knowledge about its parameters. 
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1.  INTRODUCTION 

Engineers and scientists are increasingly required to design, test, and validate new complex 
systems in simulation environments and/or with limited experimental results due to international 
and/or budgetary restrictions. Examples include space missions, certifications of missile 
stockpiles, and economic forecasting. These new trends require new practices of rigorous 
analyses of knowledge, information, uncertainty, and ignorance. This paper deals with 
knowledge construction by emphasizing both available information and ignorance. Knowledge 
can be constructed based on ignorance analysis. Ignorance analysis for knowledge construction 
ensures that our models and simulations do not assume and utilize implicitly or blindly more 
information than what is available, and accounts for confusion and conflict in available 
information. 

This paper proposes a breakdown of ignorance within a knowledge philosophical framework. 
The breakdown provides a meaningful context for modeling and analyzing complex systems. 
This ignorance construct is discussed, and some suitable analytical methods for modeling 
ignorance components are briefly described in this paper. 

The paper also examines an algebraic problem set as identified by Sandia National Laboratories 
to be a basic building block for uncertainty propagation in computational mechanics [15]. 
Solution algorithms are provided for the problem set for various assumptions about the state of 
knowledge about its parameters. 



2.  KNOWLEDGE AND IGNORANCE 

Systems of the future will require engineers to design them, test their performances, and assess 
their robustness and vulnerability in a simulated environment. Simulation requires validated 
building blocks for materials behavior, physical laws, environment-system interaction, unit 
performance, and system performance. At every level and stage of the simulation process, 
verification and validation are needed that should include ignorance analysis, and uncertainty 
analysis and modeling. Example systems include our nuclear weapon stockpile, space stations, 
satellites, space missions, etc. The processes of qualification, verification and validation are 
shown in Figure 1. The verification process consists of three stages: conceptual model 
verification, design verification, and code verification. The verification can be done by 
comparison and test of agreement between the computational model and solution, and results 
from benchmark (analytical or very accurate numerical solutions) of simplified model problems. 
The validation consists of two stages: conceptual model validation, and results validation that 
can be done by expert opinion solicitation [3]. 

Generally, engineers and scientists, and even almost most humans, tend to focus on what is 
known and not on the unknowns. Even the English language lends itself for this emphasis. For 
example, we can easily state that Expert A informed Expert B, whereas we cannot directly state 
the contrary. We can only state it by using the negation of the earlier statement in the form of 
"Expert A did not inform Expert B." Statements such as "Expert A misinformed Expert B," or 
"Expert A ignored Expert B" do not convey the same (intended) meaning. Another example is 
"John knows David," for which a meaningful direct contrary statement does not exist. The 
emphasis on knowledge and not on ignorance can also be noted in sociology by having a field of 
study called the sociology of knowledge and not having sociology of ignorance, although 
Weinstein and Weinstein [27] introduced the sociology of non-knowledge, and Smithson [23] 
introduced the theory of ignorance only in the last two decades. 

Engineers and scientists tend to emphasize knowledge and information, and sometimes 
intentionally or unintentionally brush aside ignorance. In addition, information (or knowledge) 
can be misleading in some situations because it does not have the truth content that was assigned 
to it leading potentially to overconfidence. In general, knowledge and ignorance can be 
classified as shown in Figure 2 using squares with crisp boundaries for the purpose of 
illustration. The shapes and boundaries can be made multi-dimensional, irregular and/or fuzzy. 
The evolutionary infallible knowledge (EIK) about a system is shown as the top-right square in 
the figure, and can be intrinsically unattainable due to the fallacy of humans and the evolutionary 
nature of knowledge. The state of reUable knowledge (RK) is shown using another square, i.e., 
the bottom left square, for illustration purpose. The reliable knowledge represents the present 
state of knowledge in an evolutionary process, i.e., a snapshot of knowledge as a set of know- 
how, object and prepositions that meet justifiable true beliefs (JTB) within reasonable reliability 



levels. At any stage of human knowledge development, this knowledge base about the system is 
a mixture of truth and fallacy. The intersection of EIK and RK represents the knowledge base 
with the infallible knowledge components (i.e., know-how, objects, and propositions). 
Therefore, the following relationship can be stated using the notations of set theory as: 

Infallible Knowledge (IK) = (E^^) ^ ^^^^ (1) 

where fl means intersection. Infallible knowledge is defined as knowledge that can survive the 
dialectic processes developing among humans and in societies, and passes the test of time and 
use. It constitutes known possible propositions. This infallible knowledge can be schematically 
defined by the intersection of these two squares of EIK and RK. Based on this representation, 
two primary types of ignorance can be identified: (1) ignorance within the knowledge base RK 
due to factors such as irrelevance, and (2) ignorance outside the knowledge base due to unknown 
or unknowable objects, interactions, laws, dynamics, and know-how. 

An Expert A of some knowledge about a system of interest can be represented as shown in 
Figure 2 using ellipses for illustrative purposes. Three types of ellipses can be identified, shown 
concentric in the figure but can be eccentric: (1) a subset of the evolutionary infallible 
knowledge (EIK) that the expert has learned, captured and/or created, (2) self-perceived 
knowledge by the expert, and (3) perception by others of the expert's knowledge. The EIK of 
the expert might be smaller than the knowledge self-perceived by the expert, and the difference 
between the two types is a measure of overconfidence that can be partially related to the expert's 
ego. Ideally, the three ellipses should be the same, but commonly they are not. They are greatly 
affected by communication skills of experts and their successes in dialectic processes that with 
time might lead to evolutionary knowledge marginal advances or quantum leaps; hence the 
importance of language and linguistics as the primary medium of knowledge archival for 
humans. Also, their relative sizes and positions within the infallible knowledge (IK) base are 
unknown. It can be noted from Figure 2 that the expert's knowledge can extend beyond the 
reliable knowledge base into the EIK area as a result of creativity and imagination of the expert. 
Therefore, the intersection of the expert's knowledge with the ignorance space outside the 
knowledge base can be viewed as a measure of creativity and imagination. Another expert (i.e.. 
Expert B) would have her/his own ellipses that might overlap with the ellipses of Expert A, and 
might overlap with other regions by varying magnitudes. Knowledge sources can be identified 
as shown in Figure 3. 

Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is 
classified based on knowledge sources and by sources as described in detail in Section 3. This 
classification is needed in order to understand and define the limits of our knowledge about a 
problem, and to appropriately use applicable modeling theory of ignorance. 



Model I   Computer 
Validation Simulation 

Model 
Qualification 

CONCEPTUAL MODEL 

Model 
Verification 

Figure 1. Qualification, Verification and Validation [2] 

This square 
represents the current 
state of reliable 
knowledge (RK). 

This square 
represents the 
evolutionary 
infallible 
knowledge (EIK). 

The intersection of the 
two squares represents 
knowledge with infallible 
propositions (IK). 

Expert A 

Figure 2. Human Knowledge and Ignorance [3] 
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3.  CLASSIFICATION OF IGNORANCE 

The state of ignorance for a person or society can be unintentional or deliberate due to an 
erroneous cognition state and not knowing relevant information, or ignoring information and 
deliberate inattention to something for various reasons such as limited resources or cultural 
opposition, respectively. The latter type is a state oi conscious ignorance which is not 
intentional, and once recognized evolutionary species try to correct for that state for survival 
reasons with varying levels of success. The former ignorance type belongs to the blind 
ignorance category. Therefore, ignoring means that someone can either unconsciously or 
deliberately refuse to acknowledge or regard, or leave out an account or consideration for 
relevant information [7]. These two states should be treated in developing a hierarchal 
breakdown of ignorance. 

Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance 
can be classified based on the three knowledge sources as follows: 

• Know-how ignorance: It can be related to the lack of, or having erroneous know-how 
knowledge. Know-how knowledge requires someone to know how to do a specific 
activity, function, procedure, etc., such as, riding a bicycle. 

• Object ignorance: It can be related to the lack of, or having erroneous object knowledge. 
Object knowledge is based on a direct acquaintance with a person, place or thing, for 
example, Mr. Smith knows the President of the United States. 

• Propositional ignorance: It can be related to the lack of, or having erroneous 
propositional knowledge. Propositional knowledge is based on propositions that can be 
either true or false, for example, Mr. Smith knows that the Rockies are in North America. 

The above three ignorance types can be cross-classified against two possible states for a 
knowledge agent, such as a person, of being aware or unaware of their state of ignorance. These 
two states are 

• Non-reflective (or blind) state: The person does not know of self-ignorance, a case of 
ignorance of ignorance. 

• Reflective state: The person knows and recognizes self-ignorance. Smithson (1985) 
termed this type of ignorance conscious ignorance, and the blind ignorance was termed 
meta-ignorance. As a result, in some cases the person might formulate a proposition but 
still be ignorant of the existence of a proof or disproof A knowledge agent's response to 
reflective ignorance can be either passive acceptance or a guided attempt to remedy one's 
ignorance that can lead four possible outcomes: (1) a successful remedy that is 
recognized by the knowledge agent to be a success leading to fulfillment, (2) a successful 
remedy that is not recognized by the knowledge agent to be a success leading to 
searching for a new remedy, (3) a failed remedy that is recognized by the knowledge 
agent to be a failure leading to searching for a new remedy, and (4) a failed remedy that 
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is recognized by the knowledge agent to be a success leading to blind ignorance, such as 
ignoratio elenchi (i.e., ignorance of refutation or missing the point or irrelevant 
conclusion). 

The reflective state has a survival value to evolutionary species; otherwise it can be argued that it 
never would have flourished [6]. Ignorance emerges as a lack of knowledge relative to a 
particular perspective from which such gaps emerge. Accordingly, the accumulation of beliefs 
and the emergence of ignorance constitute a dynamic process resulting in old ideas perishing and 
new ones flourishing [4]. According to Bouissac [4], the process of scientific discovery can be 
metaphorically described as not only a cumulative sum (positivism) of beliefs, but also an 
activity geared towards relentless construction of ignorance (negativism), producing architecture 
of holes, gaps, and lacunae so to speak. 

Hallden [11] examined the concept of evolutionary ignorance in decision theoretic terms. He 
introduced the notion of gambling to deal with blind ignorance or lack of knowledge according 
to which there are times when, in lacking knowledge, gambles must to be taken. Sometimes 
gambles pay off with success, i.e., continued survival, and sometimes they do not lead to 
sickness or death. 

According to evolutionary epistemology, ignorance has factitious, i.e., human-made, 
perspectives. Smithson [24] provided a working definition of ignorance based on "Expert A is 
ignorant from B's viewpoint, if A fails to agree with or show awareness of ideas which B defines 
as actually or potentially valid." This definition allows for self-attributed ignorance, and either 
Expert A or B can be attributer or perpetrator of ignorance. Our ignorance and claimed 
knowledge depend on our current historical setting which is relative to various natural and 
cultural factors such as language, logical systems, technologies and standards which have 
developed and evolved over time. Therefore, humans evolved from blind ignorance through 
gambles to a state of incomplete knowledge with reflective ignorance recognized through 
factitious perspectives. In many scientific fields, the level of reflective ignorance becomes larger 
as the level of knowledge increases. Duncan and Weston-Smith [9] stated in the Encyclopedia of 
Ignorance that compared to our bond of knowledge, our ignorance remains Aflantic. They 
invited scientists to state what they would like to know in their respective fields, and noted that 
the more eminent they were the more readily and generously they described their ignorance. 
Clearly, before solving a problem, it needs to be articulated. 

Ignorance can be viewed to have a hierarchal classification based on its sources and nature as 
shown in Figure 3 with the brief definitions provided in Table 1. Ignorance can be classified into 
two types, blind ignorance (also called meta-ignorance), and conscious ignorance (also called 
reflective ignorance). Blind ignorance includes not knowing relevant know-how, objects-related 
information, and relevant propositions that can be justified. The unknowable knowledge can be 
defined as knowledge that cannot be attained by humans based on current evolutionary 
progressions, or cannot be attained at all due to human limitations, or can only be attained 
through quantum leaps by humans. Blind ignorance also includes irrelevant knowledge that can 
be of two types: (1) relevant knowledge that is dismissed as irrelevant or ignored, and (2) 
irrelevant knowledge that is believed to be relevant through non-reliable or weak justification or 
as a result of ignoratio elenchi. The irrelevance type can be due to untopicality, taboo, and 
xmdecidedness. Untopicality can be attributed to intuitions of experts that could not be 
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negotiated with others in terms of cognitive relevance. Taboo is due to socially reinforced 
irrelevance. Issues that people must not know, deal with, inquire about, or investigate define the 
domain of taboo. The undecidability type deals with issues that cannot be designated true or 
false because they are considered insoluble, or solutions that are not verifiable, or as a result of 
ignoratio elenchi. A third component of blind ignorance is fallacy that can be defined as 
erroneous beliefs due to misleading notions. 

Kurt Godel (1906-1978) showed that a logical system could not be both consistent and complete; 
and could not prove itself complete without proving itself inconsistent and vise versa. Also, he 
showed that there are problems that cannot be solved by any set of rules or procedures; instead 
for these problems one must always extend the set of axioms. This philosophical view of logic 
can be used as a basis for classifying the conscious ignorance into two primary branches of 
inconsistency and incompleteness. 

Inconsistency in knowledge can be attributed to distorted information as a result of inaccuracy, 
conflict, contradiction, and/or confiision as shown in Figure 4. Inconsistency can result from 
assignments and substitutions that are wrong, conflicting or biased producing confusion, conflict 
or inaccuracy, respectively. The confiision and conflict results from an in-kind inconsistent 
assignments and substitutions; whereas inaccuracy results fi-om a level bias or error in these 
assigimients and substitutions. 

Incompleteness is defined as incomplete knowledge, and can be considered to consist of (1) 
absence and unknowns as incompleteness in kind, and (2) uncertainty. The unknowns or 
unknown knowledge can be viewed in evolutionary epistemology as the difference between the 
becoming knowledge state and current knowledge state. The knowledge absence component can 
lead to one of the scenarios: (1) no action and working without the knowledge, (2) 
imintentionally acquiring irrelevant knowledge leading to blind ignorance, (3) acquiring relevant 
knowledge that can be with various uncertainties and levels. The fourth possible scenario of 
deliberately acquiring irrelevant knowledge is not listed since it is not realistic. 

Uncertainty can be defined as knowledge incompleteness due to inherent deficiencies with 
acquired knowledge. Uncertainty can be classified based on its sources into three types: 
ambiguity, approximations, and likelihood. The ambiguity comes firom the possibility of having 
multi-outcomes for processes or systems. Recognition some of the possible outcomes creates 
uncertainty. The recognized outcomes might constitute only a partial list of all possible 
outcomes leading to unspecificity. In this context, unspecificity results fi-om outcomes or 
assignments that are not completely defined. The incorrect definition of outcomes, i.e., errors in 
defining outcomes, can be called nonspecificity. In this context, nonspecificity results from 
outcomes or assignments that are improperly defined. The unspecificity is a form of knowledge 
absence and can be treated similar to the absence category under incompleteness. The 
nonspecificity can be viewed as a state of blind ignorance. 

The human mind has the ability to perform approximations through reduction and 
generalizations, i.e., induction and deduction, respectively, in developing knowledge. The 
process of approximation can involve the use of vague semantics in language, approximate 
reasoning, and dealing with complexity by emphasizing relevance. Approximations can be 
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viewed to include vagueness, coarseness and simplification. Vagueness results from the non- 
crisp nature of belonging and non-belonging of elements to a set or a notion of interest; whereas 
coarseness results from approximating a crisp set by subsets of an underlying partition of the 
set's universe that would bound the crisp set of interest. Simplifications are assumptions made to 
make problems and solutions tractable. The likelihood can be defined in the context of chance, 
odds and gambling. Likelihood has primary components of randomness and sampling. 
Randomness stems from the non-predictability of outcomes. Engineers and scientists commonly 
use samples to characterize populations, hence the last type. The ignorance hierarchy of Figure 4 
shows that our knowledge shall be limited by our conscious ignorance and bounded by our blind 
ignorance. 

Ignorance 

I 
Conscious Ignorance Blind Ignorance 

Confusion Inaccuracy 

Conflict 

Inconsistency      Incompleteness       Fallacy    Unknowable 11 Irrelevance 

Unknowns 

Uncertainty        Absence 

Untopicality 

X 

undecidedness 

Taboo 

Approximations 

Vagueness      Coarseness      simplifications 

Likelihood Ambiguity 

Nonspecificity        Unspecificity 

Randomness       Sampling 
Figure 4. Ignorance Hierarchy [3] 
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Table 1. Taxonomy of Ignorance [3] 
Term Meaning 
1. Blind ignorance Ignorance of self-ignorance or called meta-ignorance. 

1.1. Unknowable Knowledge that cannot be attained by humans based on current 
evolutionary progressions, or cannot be attained at all due to 
human limitations, or can only be attained through quantum 
leaps by humans. 

1.2. Irrelevance Ignoring something. 
1.2.1. Untopicality Intuitions of experts that could not be negotiated with others in 

terms of cognitive relevance. 
1.2.2. Taboo Socially reinforced irrelevance. Issues that people must not 

know, deal with, inquire about, or investigate. 
1.2.3. Undecidedness Issues that cannot be designated true or false because they are 

considered insoluble, or solutions that are not verifiable, or 
ignoratio elenchi. 

1.3. Fallacy Erroneous beliefs due to misleading notions. 
2. Conscious ignorance A recognized self-ignorance through reflection. 

2.1. Inconsistency Inconsistency in knowledge can be attributed to distorted 
information as a result of inaccuracy, conflict, contradiction, 
and/or confusion. 

2.1.1. Confusion Wrongful substitutions. 
2.1.2. Conflict Conflicting or contradictory assignments or substitutions. 

2.1.3. Inaccuracy Bias and distortion in degree. 
2.2. Incompleteness Incomplete knowledge due to absence or uncertainty. 

2.2.1. Absence Incompleteness in kind. 
2.2.2. Unknowns The difference between the becoming knowledge state and 

current knowledge state 
2.2.3. Uncertainty Knowledge incompleteness due to inherent deficiencies with 

acquired knowledge. 
2.2.3.1. Ambiguity The possibility of having multi-outcomes for processes or 

systems. 
a) Unspecificity Outcomes or assignments that are not completely defined. 
b) Nonspecificity Outcomes or assignments that are improperly defined. 

2.2.3.2. Approximations A process that involves the use of vague semantics in language, 
approximate reasoning, and dealing with complexity by 
emphasizing relevance. 

a) Vagueness Non-crispness of belonging and non-belonging of elements to a 
set or a notion of interest. 

b) Coarseness Approximating a crisp set by subsets of an underlying partition 
of the set's universe that would boimd the set of interest. 

c) Simplifications Assumptions needed to make problems and solutions tractable. 
2.2.3.3. Likelihood Defined by its components of randomness, statistical and 

modeling. 
a) Randomness Non-predictability of outcomes. 
b) Sampling Samples versus populations. 
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4.  CONSTRUCTION OF KNOWLEDGE 

Decision situations commonly require constracting knowledge from information. Knowledge 
construction starts with data collection and information gathering that can include various 
sources and formats as identified in Figure 3. Ignorance types need to be identified, and their 
levels should be assessed in order to quantify and qualify their contribution to modeling the 
decision situation. Klir and Wierman [13] provide analytical methods that can be used for 
modeling various ignorance types and assessing their magnitudes or levels. Also, uncertainty 
measures are provided to assess magnitudes or levels of uncertainty. These uncertainty measures 
can be defined to be normegative real numbers, and should be inversely proportional to the 
strength and consistency in evidence as expressed in the theory employed, i.e., the stronger and 
more consistent the evidence, the smaller the amount of uncertainty [1,3, 13]. Such uncertainty 
measures can be constructed to assess collected information, such as opinions rendered by one 
expert on some issue of interest, or opinions rendered by several experts on the same issue, or 
collected data and information. 

Ignorance models, uncertainty measures and data collected can be entered into a systematic 
process to construct knowledge. This knowledge-construction process must have a dialectic 
nature as schematically demonstrated in Figure 5 [3]. Information can be defined as sensed 
objects, things, places, processes, and information and knowledge communicated by language 
and multi-media. Information can be viewed as a pre-processed input to our intellect system of 
cognition, and knowledge acquisition and creation. Information can lead to knowledge through 
investigation, study, and reflection. However, knowledge and information about the system 
might not constitute the eventual evolutionary knowledge state about the system as a result of not 
meeting the justification condition in JTB or the ongoing evolutionary process or both. 
Knowledge is defined in the context of the humankind, evolution, language and communication 
methods, and social and economic dialectic processes; and cannot be removed from them. As a 
result, knowledge would always reflect the imperfect and evolutionary nature of humans that can 
be attributed to their reliance on their senses for information acquisition; their dialectic 
processes; and their mind for extrapolation, creativity, reflection and imagination with associated 
biases as a result of preconceived notions due to time asymmetry, specialization and other 
factors. An important dimension in defining the state of knowledge and truth about a system is 
non-knowledge or ignorance. 

Opinions rendered by experts, that are based on information and exiting knowledge, can be 
defined as preliminary propositions with claims that are not fully justified or justified with 
adequate reliability but are not necessarily infallible. Expert opinions are seeds of propositional 
knowledge that do not meet one or more of the conditions required for the JTB with the 
reliability theory of knowledge. They are valuable as they might lead to knowledge expansion, 
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but decisions made based on them sometimes might be risky propositions since their preliminary 
nature might lead to proving them false by others or in the future. 

The relationships among knowledge, information, opinions, and evolutionary epistemology are 
schematically shown in Figure 5. The dialectic processes include communication methods such 
as languages, visual and audio formats, and other forms. Also, they include economic, class, 
schools of thought, political and social dialectic processes within peers, groups, colonies, 
societies, and the world  

Information: 
Sensed objects, things, 
places, processes, and 

communicated information 
and knowledge by language 

and multi-media. 

Dialectical 
process 

Opinion 1 

Opinion 2 

Opinion n 

Knowledge: 
A body of justified true 

beliefs (JTB), such as, laws, 
models, objects, processes, 
and principles, acquired by 
humankind about a system 

of interest. 

Test and Use of 
Knowledge: 

Study, investigation, 
utilization, reflection on the 
state of knowledge,..., etc. 

Figure 5. BCnowledge, Information, Opinions, and Evolutionary Epistemology [3] 

4.1    Limits on Knowledge Construction 
Complex decision situations can challenge human ability to construct knowledge from 
information. Humans as complex, intelligent systems have the ability to anticipate the future, 
and learn and adapt in ways that are not yet fully understood. Engineers and scientists, who 
study or design systems, have to deal with complexity more often than ever; hence the interest in 
the field of complexity. The study of complexity led to developing theories, such as chaos and 
catastrophe theories. Even if complexity theories would not produce solutions to problems, they 
can still help us to understand complex systems and perhaps direct experimental studies. Theory 
and experiment go hand in glove, therefore providing opportunities to make major contributions. 

Complexity can be classified into two broad categories [25]: (1) complexity with structure, (2) 
complexity without structure. The complexity with structure was termed organized complexity 
[26]. Organized complexity can be observed in a system that involve nonlinear differential 
equations with a lot of interactions among a large number of components and variables that 
define the system, such as in life, behavioral, social and environmental sciences. Such systems 
are usually non-deterministic in their nature. Problem solutions related to such models of 
organized complexity tend to converge to statistically meaningful averages [13]. Advancements 

17 



in computer technology and numerical methods have enhanced our ability to obtain such 
solutions effectively and inexpensively. As a result, engineers design complex systems in 
simulated environments and operations, such as a space mission to a distant planet, and scientists 
can conduct numerical experiments involving, for example, nuclear blasts. In the area of 
simulation-based design, engineers are using parallel computing and physics-based modeling to 
simulate fire propagation in engineering systems, or the turbulent flow of a jet engine using 
molecular motion and modeling. These computer and numerical advancement are not limitless, 
as the increasing computational requirements lead to what is termed transcomputational 
problems capped by the Bremermann 's limit [5]. The nature of such transcomputational 
problems is studied by the theory of computational complexity [10]. The Bremermann's limit 
was estimated based on quantum theory using the following proposition [5]: 

'Wo data processing systems, whether artificial or living, can process more than 
2xl(f^ hits per second per gram of its mass," 

where data processing is defined as transmitting bits over one or several of a system's charmels. 
Klir and Folger [12] provide additional information on the theoretical basis for this proposition 
showing that the maximum processing value to be 1.36x10''^ bits per second per gram of its 
mass. Considering a hypothetical computer that has the entire mass of the Earth operating for a 
time period equals to an estimated age of the Earth, i.e., 6x10^' grams and 10'° years, 
respectively, with each vear containing 3.15x10^ seconds, this imaginary computer would be 
able to process 2.57x10   bits, or rounded to the nearest power often, 10^'' bits, defining the 
Bremermaim's limit. Many scientific and engineering problems defined with a lot of details can 
exceed this limit. Klir and Folger [12] provide the examples of pattern recognition and human 
vision that can easily reach transcomputational levels. In pattern recognition, consider a square 
qy.q spatial array defining n = q^ cells that partition the recognition space. Pattern recognition 
often involves color. Using k colors, as an example, the number of possible color patterns within 
the space is yt". In order to stay within the Bremermann's limit, the following inequality must be 
met: 

F<10^^ (2a) 

Figure 6 shows a plot of this inequality for values of A: = 2 to 10 colors. For example using only 
two colors, a transcomputational state is reached at q' > 18 colors. These computations in pattern 
recognition can be directly related to human vision and the complexity associated with 
processing information by the retina of a human eye. If we consider a retina of about one million 
cells with each cell having only two states of active and inactive in recognizing an object, 
modeling the retina in its entirety would require the processing of 

jl,000,000 _ 1 A300 QUX 

bits of information, far beyond the Bremermann's limit [12]. 

Generally an engineering system needs to be modeled with a portion of its environment that 
interact significantly with it in order to assess some system attributes of interest. The level of 
interaction with the environment can only be subjectively assessed. By increasing the size of the 
environment and level of details in a model of the system, the complexity of the system model 
increases, possibly in a manner that does not have a recognizable or observable structure. This 
complexity without structure is more difficult to model and deal with in engineering and 
sciences. By increasing the complexity of the system model, our ability to make relevant 
assessments of the system's attributes can diminish. Therefore, there is a tradeoff between 
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relevance and precision in system modeling in this case. Our goal should be to model a system 
with a sufficient level of detail that can result into sufficient precision and can lean to relevant 
decisions in order meet the objective of the system assessment. 

Living systems show signs of these tradeoffs between precision and relevance in order to deal 
with complexity. The survival instincts of living systems have evolved, and manifest themselves 
as processes to cope with complexity and information overload. The ability of a living system to 
make relevant assessments diminishes with the increase in information input [14]. Living 
systems commonly need to process information in a continuous manner in order to survive. For 
example, a fish needs to process visual information constantly in order to avoid being eaten by 
another fish. When a school of larger fish rushes towards the fish, presenting it with images of 
threats and dangers, the fish might not be able to process all the information and images, and 
becomes confused. Considering the information processing capabilities of living systems as 
input-output black boxes, the input and output to such systems can be measured and plotted in 
order to examine such relationships and any nonlinear characteristics that they might exhibit. 
These relationships for living systems can be described using the following hypothesis that was 
analytically modeled and experimentally validated [14]: 

"As the information input to a single channel of a living system - measured in bits 
per second- increases, the information output - measured similarly - increases 
almost identically at first but gradually falls behind as it approaches a certain 
output rate, the channel capacity, which cannot be exceeded. The output then 
levels off at that rate, and finally, as the information input rate continues to go up, 
the output decreases gradually towards zero as breakdown or the confusion state 
occurs under overload." 

The above hypothesis was used to construct families of curves to represent the effects of 
information input overload as shown schematically in Figure 7. Once the input overload is 
removed, most living systems recover instantly from the overload and the process is completely 
reversible; however, if the energy level of the input is much larger than the channel capacity, a 
living system might not fully recover fi:om this input overload. Living systems also adjust the 
way they process information in order to deal with an information input overload using one or 
more of the following processes by varying degrees depending on the level of a living system in 
terms of complexity: (1) omission by failing to transmit information, (2) error by transmitting 
information incorrectly, (3) queuing by delaying transmission, (4) filtering by giving priority in 
processing, (5) abstracting by processing messages with less than complete details, (6) multiple 
channel processing by simultaneously transmitting messages over several parallel channels, (7) 
escape by acting to cut off information input, and (8) chunking by transformation information in 
meaningful chunks. These actions can also be viewed as simplification means to cope with 
complexity and/or an information input overload. 
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Figure 7. A Schematic Relationship of Input and Output Information Transmission Rates for 
Living Systems 

4.2   Closed-World Versus Open-World Assumption 
The simulated performance of a system depends heavily upon the information available at hand 
about the problem under consideration. Complete information is difficult to come by, and is 
generally not available even for simple applications. For instance, database systems use the 
closed world assumptions and introduce null values to deal with incomplete information. In 
general, an intelligent system must be able to make plausible propositions that may turn out to be 
incorrect when more information becomes available. The transferable belief model provides a 
basis for a class of methods for making such propositions when faced with incomplete 
information. 
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The transferable belief model (TBM) is a non-probabilistic approach that derives from the 
Dempster-Shafers mathematical theory of evidence [18]. It is a means for representing 
quantified degrees of belief Degrees of belief are obtained from agents providing evidence at a 
given time within a given frame of discernment. The method is capable of treating inconsistency 
in data by introducing the "open-world" assumption. In TBM, a set of all propositions consists 
of the three subsets: (1) a set of propositions known as possible (PP), (2) a set of propositions 
known as impossible (IP), (3) and a set of unknown propositions (UP). The content of the 
subsets depends not only on the given problem, but also on the evidence, which is available at a 
given time. As evidence becomes available, propositions are redistributed between the three sets 
as shown in Figure 2. 

The closed-world assumption postulates an empty UP set. The open-world assumption admits 
the existence of a non-empty UP set, and the fact that the truth might be in UP. In this 
assumption, unknown referred to none of the known propositions. 

The UP set can be considered to be empty where the truth is necessarily in the PP set, and the Q 
power set of 2" is PP. The selection of the type of the world depends on the problem at hand. 
The closed-world assumption can be selected for a quality condition problem where the 
condition cannot be other than one or more of the ratings, e.g., poor, poor or good, ..., etc. For 
diagnosing the degradation underlying causes, the open-world assumption can be a suitable 
selection since an analyst trying to solve the problem cannot always consider all the possibilities, 
i.e., one or more underlying causes might exist that are not known to the analyst. 

The degree of conflict between two or more evidence sources, k, implies the existence of a 
proposition not defined in the frame of discernment. In the idealized closed-world assumption 
that amount of conflict is redistributed among the known propositions. In the open-world 
assumption, the degree of conflict corresponds to the amount of belief allocated to the 
proposition that none of the known propositions has the truth. One must keep in mind that the 
actual underlying physics might be something else other than the causes considered, i.e., the 
solution is in the set 0 = UP and not in the set Q = PP. 

4.3   Open-World Assumption Mathematical 
Framework 

The known possible propositions set PP is based on Q, a finite set of elementary propositions. 
The set ^ is defined as the null or impossible event. In the Dempster-Shafer's framework, the 
mass of the null set, micf) is defined as zero when belief fiinctions are normalized and 
correspondingly Belifl) = 1. In contrast, under an open-world assumption, the mass of the null 
set may be nonzero if the frame of discernment Q does not contain the truth [22]. A set of focal 
elements can be defined based on m{A) > 0 as follows: 

F{m)={A^D\m{A)>6\ (3) 
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The elements of F{m) are called the focal elements of w. Shafer [18] initially imposed a 
normality condition for belief structures, i.e., ^^F{m). Smets [22] proposed to relax this 
condition, and to interpret m{^ as the part of belief committed to the assumption that none of the 
hypotheses in Q might be true to allow for an open-world assumption. If, however, the truth is 
known with absolute certainty to lie in Q, i.e., closed-world assumption, then the normality 
condition can be justified. 

Given a mass function m for A, for all 5 c Q, the belief and the plausibility of 5 are defined 
respectively as: 

Bel{BvQ)=    5]     m{A) (4a) 

PI{BVQ)=  ^     m{A) (4b) 
Ar\B*^ 

for all subsets 5 of Q where the sums range over all the focal elements A of w. The set UP is 
denoted by 0. The value Bel{B v ©) quantifies the belief that the true value of the frame of 
discernment is contained in B or 0. 

The belief and plausibility functions satisfy the following rules: (1) Bel(^) = 0, (2) 
Bel(n) = 1 - my>) < 1, and (3) Bel{B) < PI{B) . By definition, Bel(^) = 0, even though my>) 
might be positive. If the frame of discernment Q is defined such that it included the unknown 
propositions set 0, then this would lead to the same belief function as with the open-world 
assumption if one takes care to never allocate any masses to propositions of Q that did not 
include 0. 

4.4   Evidential Reasoning Mechanism 
In evidence-hypothesis reasoning, an evidence space Eisa set of mutually exclusive and 
collectively exhaustive evidential elements that can arise from a source of evidence, e.g., the set 
of all possible results of a laboratory test. A hypothesis space His a set containing all the 
mutually exclusive and collectively exhaustive hypotheses possible in the situation under 
consideration. Evidence-hypothesis reasoning is a mapping from an evidence space Etoa 
hypothesis space H, which describes the relationships between evidence and hypothesis subsets. 

Evidence usually exists in two forms either as a linguistic observation such as "high rusted 
member" or a measured parameter such as "chloride ion concentration rate equals to 0.6 kg Cl' 
W (1 lb Cr/yd)." Accordingly, the handling of evidence-hypothesis reasoning differs. 

The evidence-hypothesis reasoning mechanism is the task of inferring the belief in some 
hypotheses by collecting relevant evidence for or against these hypotheses. The inexact 
relationships among hypotheses and evidence are classified depending on the nature of evidence, 
i.e., measurement or observation. Linguistic hypothesis-evidence reasoning manipulates if-then 
rules to manifest the imcertainty associated with hypothesis-evidence relationships. Numerical 
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hypothesis-evidence reasoning deals with computations based on measurements, where the 
inexact relationships between evidence and hypotheses are presented by two-dimensional plots. 

4.5 Belief Revision 
Information is subject to change due to inherent uncertainty in information, or because the 
various ignorance types, or due to an environment that is volatile and dynamic. Current non- 
monotonic reasoning systems cannot adequately treat changes in information. Once a change in 
the knowledge base, however minor, is performed, one must begin from scratch to deal with a 
problem at hand as result of evidence fusion being computationally non-monotonic with perhaps 
consequentially changing system architecture. Belief revision methods can be used to deal with 
changing information [8]. 

4.6 Diagnostics 
Diagnostics in general is the task of inferring plausible explanations for set of evidence, or to 
decide which explanation accounts for given evidence. Observations of distress and results of 
laboratory tests can be considered as evidence for possible degradation underlying causes. The 
problem is then to infer the belief in the possible underlying causes producing the observed 
evidence. A classical method of diagnostic analysis is based on Bayesian analysis. In this case, 
the relations between evidence and underlying causes are described by conditional probabilities. 
Since mechanical, physical, and chemical processes of degradation can act in a synergistic 
manner, assigning a degradation cause might not be a clear-cut case. Since distresses might bear 
on a set of causes rather than on an individual cause and that evidences are not infallible, one can 
concludes that Bayesian theorem is not an appropriate tool for diagnostic problem. In addition, 
Bayesian theorem postulates an exhaustive frame of discernment that constitutes a complete set 
of well-defined causes. The reality is that the actual underlying causes might be something else 
other than the defined or identified causes. An open-world assumption might more appropriate 
for such cases as described in an earlier section. In addition, the Bayesian theorem can be 
generalized within the framework of evidence theory where conditional probabilities are 
replaced by belief fimctions [1, 2,16, 17, 20, 21]. Another generalization is obtained by 
extending the generalized Bayesian theorem to handle all types of belief fimctions, i.e., precise, 
interval, and fuzzy. 
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5.  SOLVING AN ALGEBRAIC PROBLEM 

This section examines an algebraic problem set as identified by Sandia National Laboratories to 
be a basic building block for uncertainty propagation in computational mechanics [15]. The 
problem set is based on a model structure that is know with certainty and provided as follows: 

Y = {A + By (5) 

where A and B are the parameters that are independent, and positive and real numbers. This 
model represents the response 7 of a system. Six problem types that reflect various imcertainty 
representation of ^4 and B are examined and solved in subsequent sections. The solutions 
presented in this section are based on methods that propagate uncertainties using endpoints of the 
input intervals to demonstrate the propagation processes. In order to obtain the output interval 
endpoints, all possible combinations of all values in the input intervals should to propagated 
using the proposed methods, and solutions as output interval endpoints can be obtained through 
incremental numerical evaluations throughout the input intervals and using max or min 
operators. In some of the problems, the endpoints of the output intervals might not correspond to 
the input interval endpoint evaluations. This step of obtaining output interval endpoints was not 
performed in the paper. 

5.1    Interval Parameters 
The parameters in this case are provided in the form of intervals as follows: 

A = [01,02] (6a) 

B = [h,b2] (6b) 

The interval arithmetic definition of the power of a positive real-valued interval [bi,b2] using a 
positive real-valued power (o) can be defined as: 

[b,AY=kr2] (7) 
Using an interval, positive real-valued power [01,02], the interval arithmetic definition of the 
power of a positive real-valued interval [67,62] is 

[b„b,f^'''^^=[b:'M (8) 
Based on Eqs. 7 and 8, the response 7can be computed utilizing interval addition as follows: 
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(9) 

where 

y,=[a,+b,Y' (10a) 

y,=[a2+b,Y' (10b) 

Example 5.1 
This problem is illustrated using the following values for the parameters A and B: 

A = [0.l,\.0 

5 = [0.0,10 

The response can be computed as 

Y = [ [0.1,1.0]+[0.0,1-O] f''"''=[y„7j = [0.7943282,1.0; 

where j, = [O.l + O.of = 0.7943282, and y^ = [l.O + l.of" = 2.0. 

5.2   An Interval Power and a Set of Intervals 
The parameters in this case are provided as follows: 

A = [a^,a^ (11a) 

^i=hiA2]   for/ = l,2, ...,n (lib) 

The information on B is provided based on n independent sources. The universal set ofB is 
defined as the imion of the n intervals. Three cases are considered herein based on specific 
additional information on B. 

5.2.1 A Consonant or Nested Set of Intervals 
The Bi intervals are nested according to the following structure: 

Bi^Bi+i   for/=l,2, ...,«-l (12) 

Since the 5, intervals are equally credible, they can be given a basic assignment m=l/«. The 
belief and plausibility measures, i.e., necessity and possibility, respectively, can be computed as 
follows: 

Bel(Bi)=      E      miBj) 
allBjQBi 

(13) 
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P/(5,)= E miBj) (14) 
allBjnBj^0 

Equations 13 and 14 can be evaluated as follows: 
/ 5, MiM      PMd. 
1 Bi \ln 1 
2 5^ 2/« 1 
3 Bi 3ln 1 (15) 

n B„ \ 1 

Equation 9 can now be used to compute the response according to each 5„ and resulting interval 
should be associated with the corresponding Bel and PI. 

Example 5.2.1 
This case is illustrated herein using the following values for the parameters A and B: 

^ = [0.1,1.0] 

5i = [0.6,0.8], B2 = [0.4,0.85], ^3 = [0.2,0.9], and B4 = [0.0,1.0] 

These intervals are nested as provided below: 
0.6 0.8 
 B,  

0.4 ' 0.85 
 B,  

0.2 ^ 0.9 

0.0 ^ 1.0 
 B,  

The response can be computed using Eqs. 9 and 15 as 
/ Bi Mm EMM XL yi 
i [0.6,0.8] 0.25 1.00 0.9649611 1.80 
2 [0.4,0.85] 0.50 1.00 0.9330329 1.85 
3 [0.2,0.9] 0.75 1.00 0.8865681 1.90 
4 [0.0,1.0] 1.00 1.00 0.7943282 2.00 

5.2.2 A Consistent Set of Intervals 
The B intervals are structured such that 

B.(^Bj*<b   fori= 1,2, ...,«andy= 1,2, ...,« (16) 

Similar to the previous case, since the B intervals are equally credible they can be given a basic 
assignment m=\ln. The belief and plausibility measures can be computed using Equations 13 
and 14. Then, Eq. 9 can be used to compute the response according to each B intervals, and 
resulting interval should be associated with corresponding Bel and PI. 
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Example 5.2.2 
This case is illustrated using the following values for the parameters A and B: 

A = [0.\,l.O] 

Bi = [0.6,0.9], B2 = [0.4,0.8], 53 = [0.1,0.7], and B4 = [0.0,1.0] 

These intervals have a common range as follows: 
0.6 0.9 
 B,  

0.4 ' 0.8 
-B. 

OJ^      ^       0.7 
0.0 ^' 1.0 
 B,  

The response can be computed using Eqs. 9, 13 and 14 as follows for all the B intervals: 
/ Bi Mm EMM ^i y^ 
1 [6.6,0.9] 0.25 1.00 0.9649611 1.90 
2 [0.4,0.8] 0.25 1.00 0.9330329 1.80 
3 [0.1,0.7] 0.25 1.00 0.8513399 1.70 
4 [0.0,1.0] 1.00 1.00 0.7943282 2.00 

The common range (Be) among all the B intervals might be of special interest, and its response 
can be assessed as follows: 

/     Bi BeKB.)    PUB.)   ^i ^2 
c     [0.6,0.7]     0.25        1.00      0.9649611 1.70 

The belief and plausibility of the common range (Be) were computed based on extension from 
possibility theory concepts since Be is common to all B intervals as follows: 

BeliB^) = mm[B.] (17a) 

P/(5,) = max[5J (17b) 

The proof of Eqs. 17a and 17b is not available and not provided herein. These equations should 
be qualified before their use. 

5.2.3 An Arbitrary Set of Intervals 
In this case, the B intervals are provided in any arbitrary structure. Similar to the previous case, 
since the 5, intervals are equally credible they can be given a basic assigimient m=\ln. The 
belief and plausibility measures can be computed using Equations 13 and 14. Then, Eq. 9 can be 
used to compute the response according to each 5„ and resulting interval should be associated 
with corresponding Bel and PI. 

Example 5.2.3 
This case is illustrated using the following values for the parameters A and B: 

A = [0.1,1.0] 
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5i = [0.6,0.8], B2 = [0.5,0.7], 53 = [0.1,0.4], and 54 = [0.0,1.0] 

These intervals do not have a common range and can be represented as follows: 

0.6 0.8 
 B,  

0.5 ' 
 B, 0.7 

0.1 0.4 2 
 B,  

0.0                          ^                                                                                 1.0 
 B,  

The response can be assessed using Eqs. 9, 13 and 14 as follows: 
/     Bi BeKB.)    PliM   y.1 y2 
1 [6.6,0.8]     0.25        0.75      0.9649611 1.80 
2 [0.5,0.7]     0.25        0.75      0.9119321 1.70 
3 [0.1,0.4]     0.25        0.50      0.9330329 1.40 
4 [0.0,1.0]      1.00        1.00      0.7943282 2.00 

5.3   Sets of Intervals 
In this case, the parameters are provided as follows: 

^i=[«/b«.-2]   for/=1,2,...,A: (18b) 

BiAbixMl]   for/=l,2,...,« (18b) 

The information on A and B is provided based on k and n independent sources, respectively. The 
universal sets oiA and B are defined as the union of the k and n respective intervals. Three cases 
are considered herein based on specific additional information on A and B. 

5.3.1 Consonant or Nested Sets of Intervals 
The Ai and Bi intervals are nested according to the following structure: 

Ai c Ai+i   for / = 1, 2, ..., k-\ (19a) 

Bf^Bj+i   foTi = l,2,...,n-l (19b) 

Since the Aj and 5, intervals are equally credible, they can be given a basic assignment mA=\lk 
and mB=l/n, respectively. The belief and plausibility measures, i.e., necessity and possibility, 
respectively, can be computed according to Eqs. 13 and 14 as follows: 

i       Ai MiM    SUM 
1 AI Ilk 1 
2 A2 Ilk 1 
3 Ai 7>lk 1 (20a) 

A„ 1 1 
and 
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/ Bi BeKBi) Pl(B,) 
1 B, \ln 1 
2 B2 lln 1 
3 Bi 3/n 1 (20b) 

n B„ I 1 
Equation 9 can now be used to compute the response according to each combination of ^4, and 5„ 
and resulting interval should be associated with corresponding Bel and PI using the intersection 
relationships from the following rules: 

(21a) Bel(A nB) = min[5e/( J), Bel{B)] 

Bel(A u 5) > max[Bel(A), Bel{B)] 

Pl{A nB)< min[P/(^), Pl(B)] 

Pl(A u 5) = max[Pl(A), Pl{B)] 

(21b) 

(21c) 

(21d) 

Example 5.3.1 
This case is illustrated using the following values for the parameters A and B: 

Ai = [0.5,0.7], A2 = [0.3,0.8], and A^ = [0.1,1.0] 

5, = [0.6,0.8], 52 = [0.4,0.85], B^ = [0.2,0.9], and B4 = [0.0,1.0] 

The Bi intervals are the same as the previous corresponding case. The response can be computed 
as follows with the PI for the resulting interval is an upper bound according to Eg. 21c: 

^/=[0.5,0.7] 

^^=[0.3,0.8] 

^HO.1,1.0] 

(Bel.Pl) 
(0.33,1.00) 

(0.67,1.00) 

(1.00,1.00) 

Bi=\0.6,0.S] 
(0.25,1.00) 
y/=l.048809 
>;^=1.328201 
(0.25,1.00) 
>;7=0.968886 
>^2=1.456451 
(0.25,1.00) 
j7=0.964961 
y2=l.S0 
(0.25,1.00) 

B2=\0A,0.S5] 
(0.50,1.00) 
:);/=0.948683 
72=1.359040 
(0.33,1.00) 
>'7=0.898523 
>;2=1.492750 
(0.50,1.00) 
:);7=0.933033 
72=1.85 
(0.50,1.00) 

B3=\0.2,0.9] 
(0.75,1.00) 
77=0.836666 
72=1.389581 
(0.33,1.00) 
77=0.812252 
72=1.528830 
(0.67,1.00) 
77=0.886568 
72=1.90 
(0.75,1.00) 

5H0.0,1.0] 
(1.00,1.00) 
77=0.707107 
72=1.449821 
(0.33,1.00) 
77=0.696845 
72=1.600361 
(0.67,1.00) 
77=0.794328 
72=2.00 
(1.00,1.00) 

5.3.2 Consistent Sets of Intervals 
The Ai and 5, intervals are structured such that 

A^nAj ^O   for/= 1,2, ...,A:andy= 1,2, ...,k (22a) 
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B.nB. *0   for j = 1, 2, ..., « andy =1,2, (22b) 

Similar to the previous case, since the Ai and 5/ intervals are equally credible they can be given a 
basic assignment mA=\lk and mB=l/n, respectively. The belief and plausibility measures can be 
computed using Equations 13 and 14. Then, Eq. 9 can be used to compute the response 
according to pair of ^4, and 5„ and resulting interval should be associated with corresponding Bel 
and PI using Eqs. 21a and 21c. 

Example 5.3.2 
This case is illustrated using the following values for the parameters A and B: 

Ai = [0.5,1.0], A2 = [0.2,0.7], and ^3 = [0.1,0.6] 

5i = [0.6,0.9], B2 = [0.4,0.8], Bj, = [0.1,0.7], and ^3 = [0.0,1.0] 

The response can be computed using Eqs. 9, 13 and 14 as follows 

jBelPl) 
^;=[0.6,0.91 
(0.25,1.00) 

^^=[0.4,0.81 
(0.50,1.00) 

^j=rO. 1,0.71      B4=\0.0,\m 
(0.75,1.00) (1.00,1.00) 

^y=[0.5,1.0] (0.33,1.00) 3;/=l.048809 

(0.25,1.00) 

y/=0.948683 
72=1.80 
(0.33,1.00) 

>'/=0.774597 
72=1.70 
(0.33,1.00) 

yr 
yf 

=0.707107 
=2.00 
33,1.00) 

^2=[0.2,0.7] (0.67,1.00) 77=0.956353 
72=1.389581 
(0.25,1.00) 

77=0.902880 
72=1.328201 
(0.50,1.00) 

77=0.786003 
72=1.265580 
(0.67,1.00) 

yi 
yt 

=0.724780 
=1.449821 
67,1.00) 

^HO-1,0.6] (1.00,1.00) 77=0.964961 
72=1.275426 
(0.25,1.00) 

77=0.933033 
72=1.223705 
(0.50,1.00) 

77=0.851340 
72=1.170485 
(0.75,1.00) 

yr 
yi 
11 

=0.794328 
=1.325782 
00,1.00) 

The common ranges {Ac and B^ can be treated similar to the case presented in Section 5.2.2 if 
needed. 

5.3.3 An Arbitrary Set of Intervals 
In this case, the Ai and 5, intervals are provided in any arbitrary structures. Similar to the 
previous case, since the Ai and 5, intervals are equally credible they can be given a basic 
assignment mA=\lk and mB=l/n, respectively. The belief and plausibility measures can be 
computed using Equations 13 and 14. Then, Eq. 9 can be used to compute the response 
according to pair of ^, and 5„ and resulting interval should be associated with corresponding Bel 
and PI using Eqs. 21a and 21c. 
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5.4   An Interval Power and a Lognormally Distributed 
Parameter 

In this case, the parameters are provided as follows: 

^ = k,«2] (23) 

ln(5)~iV(//,cr) (24) 

Monte Carlo simulation can be used to evaluate the response according to the following steps: 
• Randomly generate B to obtain b values according to its probability distribution as 

provided in Eq. 24. 
• Compute the response interval as follows: 

Y = [[a„a,]+bp'"^ = \y„y,] (25) 

where 

y^=[a,+bf (26a) 

y,=[a, + bf (26b) 

• Repeat the simulation process A'^ times and compute the moments and distribution types 
of j; and 72. 

Example 5.4 
For the following parameters: 

^ = [0.1,1.0] 

ln(5) ~ N{0.5,0.5) 

simulation was used to compute the response. A total of 100 simulation cycles produced the 
following response moments and histograms that show bimodal characteristics: 
Moment R Xl Xl 
Mean 1.923245      1.062593      2.923245 
Standard Deviation 1.009403     0.049313      1.009403 
Coefficient of Variation      0.5248 0.0464 0.3453 
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5.5   An Interval Power and an Uncertain Lognormally 
Distributed Parameter 

In this case, the parameters are provided as follows: 

A = [01,02] (27) 

ba(5)~A^( [ui,yU2lk>o-2] ) (28) 

The second order uncertainty provided in characterizing the lognormal parameter can be rolled 
into the parameters using Monte Carlo simulation to obtain ln(5) ~ N{^, <T) . Then, the 
computational procedure presented in the previous section can be used to solve the problem. 

5.6   A Set of Power Intervals and a Set of an 
Uncertain Lognormally Distributed Parameter 

The parameters, in this case, are provided as follows: 

Aj =[011,012]   foTi=\,2,...,k 

ln(5.) ~ N( [U,, , //,.2 \ [cr,,, o-.j ] )   for / = 1, 2, ..., n 

(29) 

(30) 

The information on A and B is provided based on k and n independent soxirces, respectively. The 
universal sets of ^ and B are defined as the union of the k and n respective intervals. Three cases 
can be developed as combinations of the computational procedures of Sections 3.3 and 3.5. 
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6.  CONCLUSIONS 

Engineers and scientists are increasingly required to design, test, and validate new complex 
systems in simulation environments and/or with limited experimental results due to international 
and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and 
information by critically evaluating them in terms relevance, completeness, non-distortion, 
coherence, and other key measures. Using the concepts and definitions from evolutionary 
knowledge and epistemology, ignorance is examined and classified in the report. Two ignorance 
states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e., the person 
does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e., 
the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal 
classification based on its sources and nature as provided in the report. Ignorance classification 
requires additional study and investigation to identify and develop mathematical theories for 
modeling its various types. 

The report also explores limits on knowledge construction, closed and open world assumptions, 
and fimdamentals of evidential reasoning using belief revision and diagnostics within the 
framework of ignorance analysis for knowledge construction. This area requires fiirther 
investigation and development to enhance available methods and bring them to mature levels and 
suitability for practical use. 

The report also examines an algebraic problem set as identified by Sandia National Laboratories 
to be a basic building block for uncertainty propagation in computational mechanics. Solution 
algorithms are provided for the problem set for various assumptions about the state of knowledge 
about its parameters. 
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